skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zakeri, Mohsen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2025
  2. Abstract SummaryImprovements in nanopore sequencing necessitate efficient classification methods, including pre-filtering and adaptive sampling algorithms that enrich for reads of interest. Signal-based approaches circumvent the computational bottleneck of basecalling. But past methods for signal-based classification do not scale efficiently to large, repetitive references like pangenomes, limiting their utility to partial references or individual genomes. We introduce Sigmoni: a rapid, multiclass classification method based on the r-index that scales to references of hundreds of Gbps. Sigmoni quantizes nanopore signal into a discrete alphabet of picoamp ranges. It performs rapid, approximate matching using matching statistics, classifying reads based on distributions of picoamp matching statistics and co-linearity statistics, all in linear query time without the need for seed-chain-extend. Sigmoni is 10–100× faster than previous methods for adaptive sampling in host depletion experiments with improved accuracy, and can query reads against large microbial or human pangenomes. Sigmoni is the first signal-based tool to scale to a complete human genome and pangenome while remaining fast enough for adaptive sampling applications. Availability and implementationSigmoni is implemented in Python, and is available open-source at https://github.com/vshiv18/sigmoni. 
    more » « less
  3. Abstract Detecting allelic imbalance at the isoform level requires accounting for inferential uncertainty, caused by multi-mapping of RNA-seq reads. Our proposed method, SEESAW, uses Salmon and Swish to offer analysis at various levels of resolution, including gene, isoform, and aggregating isoforms to groups by transcription start site. The aggregation strategies strengthen the signal for transcripts with high uncertainty. The SEESAW suite of methods is shown to have higher power than other allelic imbalance methods when there is isoform-level allelic imbalance. We also introduce a new test for detecting imbalance that varies across a covariate, such as time. 
    more » « less
  4. Abstract We introduce AGAMEMNON ( https://github.com/ivlachos/agamemnon ) for the acquisition of microbial abundances from shotgun metagenomics and metatranscriptomic samples, single-microbe sequencing experiments, or sequenced host samples. AGAMEMNON delivers accurate abundances at genus, species, and strain resolution. It incorporates a time and space-efficient indexing scheme for fast pattern matching, enabling indexing and analysis of vast datasets with widely available computational resources. Host-specific modules provide exceptional accuracy for microbial abundance quantification from tissue RNA/DNA sequencing, enabling the expansion of experiments lacking metagenomic/metatranscriptomic analyses. AGAMEMNON provides an R-Shiny application, permitting performance of investigations and visualizations from a graphics interface. 
    more » « less
  5. Kelso, Janet (Ed.)
    Abstract Motivation Sequence alignment is one of the first steps in many modern genomic analyses, such as variant detection, transcript abundance estimation and metagenomic profiling. Unfortunately, it is often a computationally expensive procedure. As the quantity of data and wealth of different assays and applications continue to grow, the need for accurate and fast alignment tools that scale to large collections of reference sequences persists. Results In this article, we introduce PuffAligner, a fast, accurate and versatile aligner built on top of the Pufferfish index. PuffAligner is able to produce highly sensitive alignments, similar to those of Bowtie2, but much more quickly. While exhibiting similar speed to the ultrafast STAR aligner, PuffAligner requires considerably less memory to construct its index and align reads. PuffAligner strikes a desirable balance with respect to the time, space and accuracy tradeoffs made by different alignment tools and provides a promising foundation on which to test new alignment ideas over large collections of sequences. Availability and implementation All the data used for preparing the results of this paper can be found with 10.5281/zenodo.4902332. PuffAligner is a free and open-source software. It is implemented in C++14 and can be obtained from https://github.com/COMBINE-lab/pufferfish/tree/cigar-strings. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  6. null (Ed.)
    Abstract Background The accuracy of transcript quantification using RNA-seq data depends on many factors, such as the choice of alignment or mapping method and the quantification model being adopted. While the choice of quantification model has been shown to be important, considerably less attention has been given to comparing the effect of various read alignment approaches on quantification accuracy. Results We investigate the influence of mapping and alignment on the accuracy of transcript quantification in both simulated and experimental data, as well as the effect on subsequent differential expression analysis. We observe that, even when the quantification model itself is held fixed, the effect of choosing a different alignment methodology, or aligning reads using different parameters, on quantification estimates can sometimes be large and can affect downstream differential expression analyses as well. These effects can go unnoticed when assessment is focused too heavily on simulated data, where the alignment task is often simpler than in experimentally acquired samples. We also introduce a new alignment methodology, called selective alignment, to overcome the shortcomings of lightweight approaches without incurring the computational cost of traditional alignment. Conclusion We observe that, on experimental datasets, the performance of lightweight mapping and alignment-based approaches varies significantly, and highlight some of the underlying factors. We show this variation both in terms of quantification and downstream differential expression analysis. In all comparisons, we also show the improved performance of our proposed selective alignment method and suggest best practices for performing RNA-seq quantification. 
    more » « less